Files
build/tools/compliance/graph.go
Bob Badour 3fe369c271 An ActionSet doesn't need to walk the graph.
Resolutions map back to the root, but actions do not. An iteration
works just fine.

Simplify TargetNodeSet so that it is directly iterable.

Bug: 261787132

Test: m droid dist compliance_dumpgraph compliance_dumpresolutions \
        compliance_sbom compliance_listshare compliance_rtrace \
        compliance_checkshare xmlnotice textnotice htmlnotice \
        compliancenotice_shippedlibs compliancenotice_bom

Test: m compliance_checkshare cts && \
        out/host/linux-x86/bin/compliance_checkshare out/host/linux-x86/gen/META/lic_intermediates/out/host/linux-x86/cts/android-cts.zip.meta_lic

Change-Id: Ic5a2d809b5a9a47b5d85f61e3a4a790dbe8f5fd2
2023-01-04 00:01:49 +00:00

519 lines
16 KiB
Go

// Copyright 2021 Google LLC
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package compliance
import (
"fmt"
"sort"
"strings"
"sync"
)
// LicenseGraph describes the immutable license metadata for a set of root
// targets and the transitive closure of their dependencies.
//
// Alternatively, a graph is a set of edges. In this case directed, annotated
// edges from targets to dependencies.
//
// A LicenseGraph provides the frame of reference for all of the other types
// defined here. It is possible to have multiple graphs, and to have targets,
// edges, and resolutions from multiple graphs. But it is an error to try to
// mix items from different graphs in the same operation.
// May panic if attempted.
//
// The compliance package assumes specific private implementations of each of
// these interfaces. May panic if attempts are made to combine different
// implementations of some interfaces with expected implementations of other
// interfaces here.
type LicenseGraph struct {
// rootFiles identifies the original set of files to read. (immutable)
//
// Defines the starting "top" for top-down walks.
//
// Alternatively, an instance of licenseGraphImp conceptually defines a scope within
// the universe of build graphs as a sub-graph rooted at rootFiles where all edges
// and targets for the instance are defined relative to and within that scope. For
// most analyses, the correct scope is to root the graph at all of the distributed
// artifacts.
rootFiles []string
// edges lists the directed edges in the graph from target to dependency. (guarded by mu)
//
// Alternatively, the graph is the set of `edges`.
edges TargetEdgeList
// targets identifies, indexes, and describes the entire set of target node files.
/// (guarded by mu)
targets map[string]*TargetNode
// onceBottomUp makes sure the bottom-up resolve walk only happens one time.
onceBottomUp sync.Once
// onceTopDown makes sure the top-down resolve walk only happens one time.
onceTopDown sync.Once
// shippedNodes caches the results of a full walk of nodes identifying targets
// distributed either directly or as derivative works. (creation guarded by mu)
shippedNodes *TargetNodeSet
// mu guards against concurrent update.
mu sync.Mutex
}
// Edges returns the list of edges in the graph. (unordered)
func (lg *LicenseGraph) Edges() TargetEdgeList {
edges := make(TargetEdgeList, 0, len(lg.edges))
edges = append(edges, lg.edges...)
return edges
}
// Targets returns the list of target nodes in the graph. (unordered)
func (lg *LicenseGraph) Targets() TargetNodeList {
targets := make(TargetNodeList, 0, len(lg.targets))
for _, target := range lg.targets {
targets = append(targets, target)
}
return targets
}
// compliance-only LicenseGraph methods
// newLicenseGraph constructs a new, empty instance of LicenseGraph.
func newLicenseGraph() *LicenseGraph {
return &LicenseGraph{
rootFiles: []string{},
targets: make(map[string]*TargetNode),
}
}
// TargetEdge describes a directed, annotated edge from a target to a
// dependency. (immutable)
//
// A LicenseGraph, above, is a set of TargetEdges.
//
// i.e. `Target` depends on `Dependency` in the manner described by
// `Annotations`.
type TargetEdge struct {
// target and dependency identify the nodes connected by the edge.
target, dependency *TargetNode
// annotations identifies the set of compliance-relevant annotations describing the edge.
annotations TargetEdgeAnnotations
}
// Target identifies the target that depends on the dependency.
//
// Target needs Dependency to build.
func (e *TargetEdge) Target() *TargetNode {
return e.target
}
// Dependency identifies the target depended on by the target.
//
// Dependency builds without Target, but Target needs Dependency to build.
func (e *TargetEdge) Dependency() *TargetNode {
return e.dependency
}
// Annotations describes the type of edge by the set of annotations attached to
// it.
//
// Only annotations prescribed by policy have any meaning for licensing, and
// the meaning for licensing is likewise prescribed by policy. Other annotations
// are preserved and ignored by policy.
func (e *TargetEdge) Annotations() TargetEdgeAnnotations {
return e.annotations
}
// IsRuntimeDependency returns true for edges representing shared libraries
// linked dynamically at runtime.
func (e *TargetEdge) IsRuntimeDependency() bool {
return edgeIsDynamicLink(e)
}
// IsDerivation returns true for edges where the target is a derivative
// work of dependency.
func (e *TargetEdge) IsDerivation() bool {
return edgeIsDerivation(e)
}
// IsBuildTool returns true for edges where the target is built
// by dependency.
func (e *TargetEdge) IsBuildTool() bool {
return !edgeIsDerivation(e) && !edgeIsDynamicLink(e)
}
// String returns a human-readable string representation of the edge.
func (e *TargetEdge) String() string {
return fmt.Sprintf("%s -[%s]> %s", e.target.name, strings.Join(e.annotations.AsList(), ", "), e.dependency.name)
}
// TargetEdgeList orders lists of edges by target then dependency then annotations.
type TargetEdgeList []*TargetEdge
// Len returns the count of the elmements in the list.
func (l TargetEdgeList) Len() int { return len(l) }
// Swap rearranges 2 elements so that each occupies the other's former position.
func (l TargetEdgeList) Swap(i, j int) { l[i], l[j] = l[j], l[i] }
// Less returns true when the `i`th element is lexicographically less than the `j`th.
func (l TargetEdgeList) Less(i, j int) bool {
namei := l[i].target.name
namej := l[j].target.name
if namei == namej {
namei = l[i].dependency.name
namej = l[j].dependency.name
}
if namei == namej {
return l[i].annotations.Compare(l[j].annotations) < 0
}
return namei < namej
}
// TargetEdgePathSegment describes a single arc in a TargetPath associating the
// edge with a context `ctx` defined by whatever process is creating the path.
type TargetEdgePathSegment struct {
edge *TargetEdge
ctx interface{}
}
// Target identifies the target that depends on the dependency.
//
// Target needs Dependency to build.
func (s TargetEdgePathSegment) Target() *TargetNode {
return s.edge.target
}
// Dependency identifies the target depended on by the target.
//
// Dependency builds without Target, but Target needs Dependency to build.
func (s TargetEdgePathSegment) Dependency() *TargetNode {
return s.edge.dependency
}
// Edge describes the target edge.
func (s TargetEdgePathSegment) Edge() *TargetEdge {
return s.edge
}
// Annotations describes the type of edge by the set of annotations attached to
// it.
//
// Only annotations prescribed by policy have any meaning for licensing, and
// the meaning for licensing is likewise prescribed by policy. Other annotations
// are preserved and ignored by policy.
func (s TargetEdgePathSegment) Annotations() TargetEdgeAnnotations {
return s.edge.annotations
}
// Context returns the context associated with the path segment. The type and
// value of the context defined by the process creating the path.
func (s TargetEdgePathSegment) Context() interface{} {
return s.ctx
}
// String returns a human-readable string representation of the edge.
func (s TargetEdgePathSegment) String() string {
return fmt.Sprintf("%s -[%s]> %s", s.edge.target.name, strings.Join(s.edge.annotations.AsList(), ", "), s.edge.dependency.name)
}
// TargetEdgePath describes a sequence of edges starting at a root and ending
// at some final dependency.
type TargetEdgePath []TargetEdgePathSegment
// NewTargetEdgePath creates a new, empty path with capacity `cap`.
func NewTargetEdgePath(cap int) *TargetEdgePath {
p := make(TargetEdgePath, 0, cap)
return &p
}
// Push appends a new edge to the list verifying that the target of the new
// edge is the dependency of the prior.
func (p *TargetEdgePath) Push(edge *TargetEdge, ctx interface{}) {
if len(*p) == 0 {
*p = append(*p, TargetEdgePathSegment{edge, ctx})
return
}
if (*p)[len(*p)-1].edge.dependency != edge.target {
panic(fmt.Errorf("disjoint path %s does not end at %s", p.String(), edge.target.name))
}
*p = append(*p, TargetEdgePathSegment{edge, ctx})
}
// Pop shortens the path by 1 edge.
func (p *TargetEdgePath) Pop() {
if len(*p) == 0 {
panic(fmt.Errorf("attempt to remove edge from empty path"))
}
*p = (*p)[:len(*p)-1]
}
// Clear makes the path length 0.
func (p *TargetEdgePath) Clear() {
*p = (*p)[:0]
}
// Copy makes a new path with the same value.
func (p *TargetEdgePath) Copy() *TargetEdgePath {
result := make(TargetEdgePath, 0, len(*p))
for _, e := range *p {
result = append(result, e)
}
return &result
}
// String returns a string representation of the path: [n1 -> n2 -> ... -> nn].
func (p *TargetEdgePath) String() string {
if p == nil {
return "nil"
}
if len(*p) == 0 {
return "[]"
}
var sb strings.Builder
fmt.Fprintf(&sb, "[")
for _, s := range *p {
fmt.Fprintf(&sb, "%s -> ", s.edge.target.name)
}
lastSegment := (*p)[len(*p)-1]
fmt.Fprintf(&sb, "%s]", lastSegment.edge.dependency.name)
return sb.String()
}
// TargetNode describes a module or target identified by the name of a specific
// metadata file. (immutable)
//
// Each metadata file corresponds to a Soong module or to a Make target.
//
// A target node can appear as the target or as the dependency in edges.
// Most target nodes appear as both target in one edge and as dependency in
// other edges.
type TargetNode targetNode
// Name returns the string that identifies the target node.
// i.e. path to license metadata file
func (tn *TargetNode) Name() string {
return tn.name
}
// Dependencies returns the list of edges to dependencies of `tn`.
func (tn *TargetNode) Dependencies() TargetEdgeList {
edges := make(TargetEdgeList, 0, len(tn.edges))
edges = append(edges, tn.edges...)
return edges
}
// PackageName returns the string that identifes the package for the target.
func (tn *TargetNode) PackageName() string {
return tn.proto.GetPackageName()
}
// ModuleName returns the module name of the target.
func (tn *TargetNode) ModuleName() string {
return tn.proto.GetModuleName()
}
// Projects returns the projects defining the target node. (unordered)
//
// In an ideal world, only 1 project defines a target, but the interaction
// between Soong and Make for a variety of architectures and for host versus
// product means a module is sometimes defined more than once.
func (tn *TargetNode) Projects() []string {
return append([]string{}, tn.proto.Projects...)
}
// LicenseConditions returns a copy of the set of license conditions
// originating at the target. The values that appear and how each is resolved
// is a matter of policy. (unordered)
//
// e.g. notice or proprietary
func (tn *TargetNode) LicenseConditions() LicenseConditionSet {
return tn.licenseConditions
}
// LicenseTexts returns the paths to the files containing the license texts for
// the target. (unordered)
func (tn *TargetNode) LicenseTexts() []string {
return append([]string{}, tn.proto.LicenseTexts...)
}
// IsContainer returns true if the target represents a container that merely
// aggregates other targets.
func (tn *TargetNode) IsContainer() bool {
return tn.proto.GetIsContainer()
}
// Built returns the list of files built by the module or target. (unordered)
func (tn *TargetNode) Built() []string {
return append([]string{}, tn.proto.Built...)
}
// Installed returns the list of files installed by the module or target.
// (unordered)
func (tn *TargetNode) Installed() []string {
return append([]string{}, tn.proto.Installed...)
}
// TargetFiles returns the list of files built or installed by the module or
// target. (unordered)
func (tn *TargetNode) TargetFiles() []string {
return append(tn.proto.Built, tn.proto.Installed...)
}
// InstallMap returns the list of path name transformations to make to move
// files from their original location in the file system to their destination
// inside a container. (unordered)
func (tn *TargetNode) InstallMap() []InstallMap {
result := make([]InstallMap, 0, len(tn.proto.InstallMap))
for _, im := range tn.proto.InstallMap {
result = append(result, InstallMap{im.GetFromPath(), im.GetContainerPath()})
}
return result
}
// Sources returns the list of file names depended on by the target, which may
// be a proper subset of those made available by dependency modules.
// (unordered)
func (tn *TargetNode) Sources() []string {
return append([]string{}, tn.proto.Sources...)
}
// InstallMap describes the mapping from an input filesystem file to file in a
// container.
type InstallMap struct {
// FromPath is the input path on the filesystem.
FromPath string
// ContainerPath is the path to the same file inside the container or
// installed location.
ContainerPath string
}
// TargetEdgeAnnotations describes an immutable set of annotations attached to
// an edge from a target to a dependency.
//
// Annotations typically distinguish between static linkage versus dynamic
// versus tools that are used at build time but are not linked in any way.
type TargetEdgeAnnotations struct {
annotations map[string]struct{}
}
// newEdgeAnnotations creates a new instance of TargetEdgeAnnotations.
func newEdgeAnnotations() TargetEdgeAnnotations {
return TargetEdgeAnnotations{make(map[string]struct{})}
}
// HasAnnotation returns true if an annotation `ann` is in the set.
func (ea TargetEdgeAnnotations) HasAnnotation(ann string) bool {
_, ok := ea.annotations[ann]
return ok
}
// Compare orders TargetAnnotations returning:
// -1 when ea < other,
// +1 when ea > other, and
// 0 when ea == other.
func (ea TargetEdgeAnnotations) Compare(other TargetEdgeAnnotations) int {
a1 := ea.AsList()
a2 := other.AsList()
sort.Strings(a1)
sort.Strings(a2)
for k := 0; k < len(a1) && k < len(a2); k++ {
if a1[k] < a2[k] {
return -1
}
if a1[k] > a2[k] {
return 1
}
}
if len(a1) < len(a2) {
return -1
}
if len(a1) > len(a2) {
return 1
}
return 0
}
// AsList returns the list of annotation names attached to the edge.
// (unordered)
func (ea TargetEdgeAnnotations) AsList() []string {
l := make([]string, 0, len(ea.annotations))
for ann := range ea.annotations {
l = append(l, ann)
}
return l
}
// TargetNodeSet describes a set of distinct nodes in a license graph.
type TargetNodeSet map[*TargetNode]struct{}
// Contains returns true when `target` is an element of the set.
func (ts TargetNodeSet) Contains(target *TargetNode) bool {
_, isPresent := ts[target]
return isPresent
}
// Names returns the array of target node namess in the set. (unordered)
func (ts TargetNodeSet) Names() []string {
result := make([]string, 0, len(ts))
for tn := range ts {
result = append(result, tn.name)
}
return result
}
// String returns a human-readable string representation of the set.
func (ts TargetNodeSet) String() string {
return fmt.Sprintf("{%s}", strings.Join(ts.Names(), ", "))
}
// TargetNodeList orders a list of targets by name.
type TargetNodeList []*TargetNode
// Len returns the count of elements in the list.
func (l TargetNodeList) Len() int { return len(l) }
// Swap rearranges 2 elements so that each occupies the other's former position.
func (l TargetNodeList) Swap(i, j int) { l[i], l[j] = l[j], l[i] }
// Less returns true when the `i`th element is lexicographicallt less than the `j`th.
func (l TargetNodeList) Less(i, j int) bool {
return l[i].name < l[j].name
}
// String returns a string representation of the list.
func (l TargetNodeList) String() string {
var sb strings.Builder
fmt.Fprintf(&sb, "[")
sep := ""
for _, tn := range l {
fmt.Fprintf(&sb, "%s%s", sep, tn.name)
sep = " "
}
fmt.Fprintf(&sb, "]")
return sb.String()
}
// Names returns an array the names of the nodes in the same order as the nodes in the list.
func (l TargetNodeList) Names() []string {
result := make([]string, 0, len(l))
for _, tn := range l {
result = append(result, tn.name)
}
return result
}